+ الرد على الموضوع
صفحة 3 من 4 الأولىالأولى 1 2 3 4 الأخيرةالأخيرة
النتائج 21 إلى 30 من 35

الموضوع: الطاقة

  1. #21

    • د. محمد سعيد عيسى غير متواجد حالياً
    • مشرف

    تاريخ التسجيل
    Dec 2010
    العمر
    75
    المشاركات
    1,147

    افتراضي

    تخصيب اليورانيوم


    إنتاج الطاقة العالمي بين 1980 - 2030 : International Energy Outlook 2007, EIA.

    اليورانيوم هو المادة الخام الأساسية للمشروعات النووية المدنية والعسكرية. ويستخلص من طبقات قريبة من سطح الأرض أو عن طريق التعدين من باطن الأرض. ورغم أن مادة اليورانيوم توجد بشكل طبيعي في أنحاء العالم، لكن القليل منه فقط يوجد بشكل مركز كخام. وحينما تنشطر ذرات معينة من اليورانيوم في تسلسل تفاعلي بسمي بالانشطار النووي.، ويحدث ببطء في المنشآت النووية، وبسرعة هائلة في حالة تفجيرسلاح نووي. وينجم عن ذلك انطلاق للطاقة وفي الحالتين يتعين التحكم في الانشطار تحكما بالغا. ويكون الانشطار النووي في أفضل حالاته حينما يتم استخدام النظائر من اليورانيوم-235 (أو البلوتونيوم 239)، والمقصود بالنظائر هي الذرات ذات نفس الرقم الذري ولكن بعدد مختلف من النيوترونات. ويعرف اليورانيوم-235 بـالنظير الانشطاري لميله للانشطار محدثا تفاعلا تسلسليا، يطلق الطاقة في صورة حرارية. وحينما تنشطر نواةذرة من اليورانيوم-235 فإنها تطلق نيوترونين أو ثلاث نيوترونات. وحينما تتواجد إلى جانبها ذرات أخرى من اليورانيوم-235 تصتدم بها تلك النيوترونات مما يؤدي لانشطار الذرات الأخرى، وبالتالي تنطلق نيوترونات أخرى. ولا يحدث التفاعل النووي إلا إذا توافر ما يكفي من ذرات اليورانيوم-235 بما يسمح بأن تستمر هذه العملية كتفاعل متسلسل يتواصل من تلقاء نفسه. أو ما يعرف بـالكتلة الحرجة. غير أن كل ألف ذرة من اليورانيوم الطبيعي تضم سبع ذرات فقط من اليورانيوم-235 القادرة على الانقسام. بينما تكون الذرات الأخرى الـ993 من اليورانيوم الأكثر كثافة ورقمه الذري يورانيوم-238 فلا تتميز بخاصية الانقسام عند امتصاصها للنيوترون. ومفاعلات الماء الخفيف LightWater Reactors هي نوع من المفاعلات الإنشطارية النووية The Nuclear Fission Reactors التي تستعمل في الولايات المتحدة الأمريكية وانجلترا واليابان وفرنسا وألمانيا والصين وكندا وبلجيكا لتوليد القوي الكهربائية وتستخدم الماء العادي كوسيط في اتسخين الماء وتحويله إلى بخار عالي الضغط لتشغيل التوربينات لتوليد الكهرباء من المولدات. وهذا يتطلب تخصيب وقود اليورانيوم الخام Uranium Fuel Enrichment.
    ويحتوي اليورانيوم الطبيعي على نسبة 0،7 % من يورانيوم-235 وهو نظير ينشطر، وأما 99،3% الباقية فهي يورانيوم-238 لا ينشطر. واليورانيوم الطبيعي يخصب بحيث يصبح به من 2,5 - 0و4 % يورانيوم-235 القابل للإنشطار فيكون صالحا للاستخدام في مفاعلات الماء الخفيف التي تعمل ب الولايات المتحدة الأمريكية وبلاد عديدة أخرى مثل اليابان وفرنسا وانجلترا وألمانيا وغيرهم، بينما مفاعلات الماء الثقيلThe Heavy Waterالتي تعمل في كندا تستخدم اليورانيوم الطبيعي.
    وفي حالة التخصيب يتطلب تزويد المفاعل النووي ب 30 طن من اليورانيوم المخصب إلى درجة 5و3 % لإمداد مفاعل واحد بالوقود النووي لمدة عام إذا كان يعمل بقدرة 1000 ميجاوات. وعملية تخصيب اليورانيومUranium Enrichment تتم بتخلل مادة هكسافلوريد اليورانيوم UraniumHexaflourideالغازية وراء حاجز من مادة مسامية فتزيد نسبة اليورانيوم-235 في اليورانيوم من 7و0 % إلى نحو 5و3 %. وذلك لأن نفاذية اليورانيوم-235 في الحاجز المسامي تكون أعلى من نفاذية النظيريورانيوم-238 الأثقل منه، وبتكرار عملية النفاذية خلال حواجز متتالية مرات كثيرة ترتفع نسبة اليورانيوم-235 من 7و0% إلى 5و3 % ويصبح بذلك صالحا للاستخدام في المفاعلات النووية التي تعمل بالماء العادي، مثل مفاعل الماء المغلي.
    كما يمكن فصل مادة اليورانيوم-235 الخفيفة نسبيا بطريقة أخرى عن يورانيوم-238 بواسطة آلات الطرد المركزي، وها ما تتبعه إيران في الوقت الحاضر. ووقود اليورانيوم اللازم للمفاعلات الإنشطارية لا يصنع قنبلة ذرية لأن القنبلة تحتاج تخصيب أكثر يصل إلى 90% يورانيوم-235 لكي يتم تفاعل متسلسل سريع وقت الانفجار.

    واليورانيوم والبلوتونيوم المخصبان بنسبة مرتفعة جدا يستخدمان في صنع القنابل النووية. لأن اليورانيوم المرتفع الخصوبة به نسبة عالية من اليورانيوم-235 الغير مستقر والمركز صناعيا (المخصب). والبلوتونيوم Plutonium يصنع نتيجة معالجة وقود اليورانيوم في المفاعلات الذرية أثناء عملها حيث تقوم بعض ذرات اليورانيوم (حوالي 1% من كمية اليورانيوم) بامتصاص نيترونneutron لإنتاج عنصر جديد هو البلوتونيوم الذي يستخلص بطرق كيميائية. ولصنع التفجير النووي يدمج اليورانيوم أو البلوتونيوم المخصبان بطريقة معينة بمتفجرات تقليدية تعمل على تكون كتلة الحرجة. وهذا الدمج يعمل على تكثيف المادة النووية آنيا فينتج التفاعل المتسلسل وينتج الانفجار النووي المدمر.

    ويمكن تخصيب اليورانيوم بعدة طرق. ففي برنامج تصنيع الأسلحة النووية بأمريكا يتبع طريقة الانتشار الغازي the Gaseous Diffusion Method أو النفاذية الغازية باستغلال النفاذية المختلفة لكل من يورانيوم-235 ويورانيوم-238 في المواد. يتم ذلك بتحويل اليورانيوم الطبيعي (نسبة يورانيوم-235 فيه 7و0 % فقط) إلي غاز هكسافلوريد اليورانيومUranium Hexafluoride ثم يضخ خلال حاجز مسامي يسمح لذرات يورانيوم-235 بالمرور خلاله بسرعة أكبر من سرعة نفاذية بقية ذرات اليورانيوم، وبتكرار هذه العملية في عدة دورات يرتفع تركيز اليورانيوم-235 إلى نحو 90 % فيصلح لصنع الأسلحة النووية، وهذا ما اتبعته الولايات المتحدة الأمريكية خلال الحرب العالمية الثانية]] لصنع قنبل هيروشيما. إما الصين وفرنسا وبريطانيا والإتحاد السوفيتي فقد لجؤا إلي طريقة تخصيب اليورانيوم بطريقة الطرد المركزي لغاز هكسافلوريد اليورانيوم بسرعة عالية بدلا من طريقة الانتشار الغازي، وهذا ما تتبعته إيران حاليا لتخصيب اليورانيوم. وطبقا لهذه الطريقة يحول اليورانيوم الطبيعي إلى غاز هكسافلوريد اليورانيوم بالتسخين ثم يدخل في آلة طرد مركزي تدور بسرعة كبيرة. وبتاثير قوة الطرد المركزي تتجه ذرات اليورانيوم الأثقل يورانيوم-238 إلى حافة أسطوانة الطرد المركزي، بينما تبقى ذرات اليورانيوم-235 (الأخف) في وسط الأسطوانة، ويتركز اليورانيوم-235 في وسط الأسطوانة فيـُسحب ويُفصل. وتستخدم هذه الطريقة لتخصيب اليورانيوم أيضا في الهند وباكستان وإيران وكوريا الشمالية، وهي تختصر الطاقة المستخدمة للتخصيب عن طريقة النفاذية الغازية.
    وهناك طريقة التدفق النفاث المتبعة في جنوب أفريقيا وطريقة الفصل للنظير بالكهرومغناطيسية التي كان العراق يتبعها قبل حرب الخليج عام 1991. ويمكن استعمال طريقة التخصيب بالليزر لفصل اليورانيوم بتحويل المعدن إلى بخار وبتسليط أشعة الليزر عليه فتثير ذرات اليورانيوم-235 والتي تتجمع وتتركز بالتأثير الإلكتروستاتيكي، وهذه التجربة تمت في كوريا الجنوبية عام 2000 سرا.

    يتبع............

  2. #22

    • د. محمد سعيد عيسى غير متواجد حالياً
    • مشرف

    تاريخ التسجيل
    Dec 2010
    العمر
    75
    المشاركات
    1,147

    افتراضي

    وبعد ان استعرضنا الانواع المختلفه للطاقة نحاول ان نعطى فكرة عن كل نوع من تلك الانواع بتوفيق من الله ، ونستهل كتابتنا بـ

    طاقة الحيوان
    أقلمة الحيوانات :
    فالأقلمة تعني مقدرة الكائن الحي على تحمل ظروف بيئية جديدة – لم يسبق تعرضه لها – وذلك دون أن تنخفض أو تتدهور صفاته المختلفة عما كانت عليه في بيئته الأصلية التي نشأ فيها، أي أن هذا الكائن الحي . والبيئة عبارة عن محصلة عديد من العوامل تحيط بالكائن الحي وتؤثر فيه وعليه، ومن هذه العوامل البيئية ( التي يتوقف عليها لحد ما بنجاح الأقلمة للحيوانات المختلفة المتنقلة الحي . والبيئة عبارة عن محصلة عديد من العوامل تحيط بالكائن الحي وتؤثر فيه وعليه، ومن هذه العوامل البيئية ( التي يتوقف عليها لحد ما بنجاح الأقلمة للحيوانات المختلفة المتنقلة إلى بيئات جديدة ) ما يلي :

    1- الحرارة :
    تحتفظ الحيوانات الزراعية بدرجة حرارة جسمها طبيعياً في نطاق دن درجات الحرارة ملائم لتركيبها الفسيولوجي، فهناك توازن حراري معين بين الطاقة الحرارية الناتجة من جسم الحيوان وبين كميات الحرارة التي يكتسبها أو يفقدها الحيوان في الجو الخارجي ، ويمكن توضيح ذلك بالمعادلة الآتية : ( أ - ب + ج + د + و= صفر ).
    حيث أن :
    أ = الحرارة الناتجة من عمليات التمثيل الفسيولوجي في الجسم .
    ب= الحرارة المفقودة عن طريق البخر من الجلد وأجهزة التنفس .
    ج= الحرارة المكتسبة أو المفقودة من تناول الغذاء أو الماء .
    د= الحرارة المكتسبة أو المفقودة عن طريق التلامس بين الجلد والجو .
    هـ = الحرارة المكتسبة أو المفقودة نتيجة التلامس بين الهواء وأجهزة التنفس الداخلية .
    و= الحرارة المكتسبة أو المفقودة نتيجة الإشعاع .
    والمدى الحراري الملائم للماشية التي نشأت في المناطق المعتدلة يتراوح ما بين 1-+16 مْ ، في حين يكون للماشية التي نشأت في المناطق الحارة ما بين +10 إلى +27مْ . فبارتفاع درجات الحرارة إلى ما يقرب من الحد الأقصى للمدى الحراري الملائم تجد أن ميكانيكية التنظيم الحراري تنشط فيزداد معدل التنفس والنبض والبخر من أسطح الجسم المختلفة، أما إن زادت درجات حرارة الجو الخارجي عند الحد الأقصى للمدى الحراري الملائم (27م ْ لماشية المناطق المعتدلة، 35 م ْ لماشية المناطق الحارة ) فإن طاقة الحيوان للتنظيم الحراري تقل تدريجياً دلالة على عدم استطاعة الحيوان ملاءمة الظروف البيئية الجوية، وتبدأ طاقة الحيوان الإنتاجية والفسيولوجية في الانخفاض تدريجياً . فارتفاع درجات حرارة الجو في المناطق المعتدلة يؤدي إلى خفض محصول اللبن وظهور حالات الإجهاض . كما أن ارتفاع حرارة الجو في المناطق الاستوائية وشبه الاستوائية تؤدي إلى خفض معدل الاستهلاك في مواد العلف وخفض القدرة التناسلية للحيوانات الزراعية . وبوجه عام إذا عجز الجسم عن القيام بالتنظيم الحراري فإن الحيوان ترتفع درجة حرارته ويقل استهلاكه لمواد العلف وكذلك يقل إنتاجه سواء في إنتاج اللبن أو النمو أو التسمين. وهذا يفسر التدهور الذي يحدث في إنتاج الماشية المعتدلة عالية الإنتاج عند تربيتها في المناطق الحارة.

    2-الإشعاع الشمسي :
    : يحتوي ضوء الشمس على عدد من الأشعة تختلف في طول موجاتها وتكوينها وأثرها . ومن دراسة الطيف يتضح أن درجة الحرارة ترتفع على التـوالي من اللون البنفسجي إلى اللون الأحمر، وتبلغ أقصاها في المنطقة تحت الحمراء من الطيف الغير منظور، والأشعة الحمراء هي أشعة حرارية، فعندما تقع على سطح الجلد في الحيوان تجعل سطحه دافئاً، لذلك فإن كثيراً من الحيوانات تحتاج إلى الظل في فترة الحر الشديد نهاراً، وذلك تجنباً لآثار الأشعة تحت الحمراء .
    كما أن للون أهمية كبيرة في مقاومة الحرارة، لأن اللون يحدد درجة الكمية الممتصة من الإشعاع الشمسي الذي يقع على الحيوان، فالسطح 1و اللون الأبيض يمتص من 20% من الإشعاع المنظور الذي يقع عليه ، بينما يمتص السطح الأسود اللون حوالي 80% مـن هذا الإشعاع المنظور . بينما ليس للون تأثير على الإشعاعات من سخونة الأرض والمواد الأخرى وعلى ذلك لون الحيوان الأسود يزيد العبء الحراري عليه، إلا أنه إذا كان اللون السائد هو اللون الأبيض ولم تكن هناك أصباغ في الجلد أو على بعض المناطق كما في حالة ماشية الإيرشير، فإن الأشعة فوق البنفسجية تؤثر على الجلد ( مسببة سرطانات )، وتبعاً لذلك يتأثر الحيوان. وتؤدي الحرارة إلى تغييرات في تركيب الدم تتمثل في انخفاض تركيز أكسيد الكربون وزيادة سكر الدم والفوسفات .

    3- الضوء :
    يؤثر الضوء على بعض العمليات الفسيولوجية مثل التنظيم الهرموني المرتبط بالتناسل من خلال التأثير على الغدة النخامية خاصة في بعض أنواع الأغنام، كما يؤثر على استبدال الحيوان لغطاء جسمه من الشعر، فعندما يقصر طول النهار ويزداد طول الليل يبدأ نمو الشعر الطويل على بعض أنواع الحيوانات لتكوين غطاء الجسم الشتوي للحماية ضد الأجواء الباردة، وبعكس ذلك عندما يقصر الليل ويطول النهار تأخذ الحيوانات في التخلص من الغطاء الشتوي، ويظهر الغطاء الصيفي القصير الأملس، وهذا عامل هام لأقلمة الحيوانات للأجواء الحارة إذا امتازت بسرعة تغييرها لغطاء جسمها الشتوي فإنها يمكن استيرادها وإدخالها من مناطق نشأتها إلى المناطق الحارة .

    4-الأمطار والرطوبة :
    : في حالة الأمطار الغزيرة والرطوبة العالية تكون حيوانات المنطقة صغيرة الحجم بطيئة النمو، وتزداد الحالة سوءاً بارتفاع درجة الحرارة، إذ يجب على الحيوان أن يتخلص من العبء الحراري الزائد عن طريق البخر والتنفس، بينما تعيق الرطوبة الجوية من قدرة الحيوان على التخلص من الحرارة الزائدة عن حاجة الجسم .

    5-الرياح :
    للرياح غير العادية أثرها على الحيوانات، ولكي تقاوم الحيوانات هذه الظروف يجب أن يحميها غطاء من الشعر الطويل خاصة في المناطق شديدة الرياح وفي المرتفعات، كما يجب توفير الغذاء الذي يتناوله الحيوان منعاً لتعرضه المباشر للجو القارض.

    6- المرتفعات :
    يقل في تربيتها الكالسيوم، فهي حمضية، كما يقل في هوائها الأوكسجين، لذا تكون حيوانات هذه المناطق صغيرة الحجم ودماؤها غنية بكرات الدم الحمراء ذات المقدرة المضاعفة على الاتحاد بالأوكسجين، وهذا ما يلائم كذلك المناطق الحارة فيسهل على سلالات تلك المناطق أن تتأقلم أسرع في الجو الحار، وذلك للتشابه في الظروف الجوية في مناطق المرتفعات مع المناطق الحارة من حيث تكوين الهواء ودرجة وجود الأوكسجين وارتفاع أثر الأشعة فوق البنفسجية، ويفضل الحيوانات ذات اللون الداكن في المرتفعات لحاجتها للأشعة الحرارية ، بينما يفضل اللون الفاتح في المناطق الحارة لعكس هذه الأشعة الحرارية لعدم الحاجة إليها، ولذلك يعد اللون مشكلة تحت هذه الظروف .

    7-الأمراض والطفيليات :
    وهي من العوامل المؤثرة على الإنتاج الحيواني، لذا يتعين تطعيم الحيوانات التي تنتقل من منطقة لأخرى ضد الأمراض السائدة في المناطق الجديدة، لأن المناعة التي يكتسبها النتاج من أمه في مناطقها الأصلية تكون مناسبة للأمراض السائدة في تلك المناطق ولكنها قد تختلف بالنسبة لنوع المناعة الضرورية للأمراض الأخرى التي تنتشر في المناطق الجديدة التي تنتقل إليها الحيوانات .
    هذا بالإضافة إلى الطفيليات الخارجية ( التي تعتبر عاملاً أساسياً في نقل بعض الأمراض ) والتي يتم التغلب عليها بالتغذية الجيدة السليمة للحيوانات ذات الشعر القصير الأملس مع توجيه العلاج المناسب لها .

    8 – الغذاء :
    التغذية السليمة تجعل الحيوان مقاوماً للأمراض، والعكس تماماً لو لم يتحصل الحيوان على احتياجاته الغذائية أو أفرط في تغذيته أصبح عرضة للأمراض والعقم وانخفاض كفاءته التناسلية والإنتاجية .وتتأثر التغذية بدرجة حرارة الجو إذ يؤدي ارتفاع درجة حرارة الجو إلى خفض استهلاك العلف في الحيوانات الغير متلائمة مع ظروف الجو الحار .

    9- الماء :
    تعتبر ماشية المناطق الحارة أكثر تحملاً للظروف الجوية الحارة فهي تفقد من وزنها 1/7 ما تفقده الحيوانات غير الملائمة لهذه البيئة، وربما لتحمل حيوانات المناطق الحارة للعطش أكثر، وكذلك لعدم انخفاض استهلاكها من العلف بفعل الجو الحار كما يحدث مع الحيوانات الأخرى الغير ملائمة .

    10- الإسكان :
    الغرض منه حماية الحيوان من الأجواء الغير مناسبة وتسهيل عمليات الرعاية اليومية، فالغرض الأول يصبح هاماً في حالة الأجواء الشاذة غير العادية بينما يصبح الغرض الثاني ذا اعتبار في حالة عدم وفرة الأيدي العاملة، ويجب حساب تكاليف الإسكان بإمكانياته حتى يكون اقتصادياً مع ظروف الحيوان الإنتاجية كما يجب أن تتوفر فيها الظروف الصحية الملائمة ، من مساحات تتناسب مع الحيوان للنوم والرياضة والأكل والشرب والولادات والحليب والعزل، وكذلك من فتحات للتهوية وارتفاع الأسقف ووضع المبنى بما يتلائم مع الاتجاهات الأصلية ، وحرارة الهواء ورطوبته، والإشعاع ، والأمطار ، والعواصف وعمل حساب المظلات ونوعية الأرضيات والجدران، وحركة الهواء ومكوناته داخل الإسطبل ورطوبته وحرارته، والتخلص من الفضلات .

    التهجين :
    عند إدخال أي نوع من الماشية من منطقة لأخرى تختلف عنها في طبيعتها الجغرافية فإنه يجب أن يسبقه الدراسات الآتية :
    1- دراسة درجة الحرارة ومتوسط سقوط الأمطار والرطوبة النسبية في البلد المستورد، حتى يتم تحديد مدى ملاءمة هذه الظروف على مدار السنة لتربية النوع المستورد .
    2- دراسة الصفات المورفولوجية والهستولوجية للحيوان المستورد، كلون الجلد ومسطحه ولن الشعر وكثافته ولمعانه، وسمك الجلد ودرجة التصاقه بالجسم ، وفاعلية الغدد العرقية والدهنية وعددها لكل سم2 .
    3- دراسة فسيولوجية للحيوان المستورد، لتقدير سرعة التنفس والنبض ودرجة حرارة الجسم. ومن درجة حرارة الجسم يستخرج معامل التحمل الحراري أو معامل الأقلمة وذلك من المعادلة الآتية :
    معامل الأقلمة = 100 – 10× ( ت – 101 ) حيث أن :
    ت = متوسط درجة حرارة جسم الحيوان عند تعرضه لدرجة حرارة بين 85 – 95 فْ لمدة 3 أيام متتالية، على أن تقاس درجة الحرارة الساعة 10 صباحاً و3 بعد الظهر يومياً .
    101 = درجة حرارة الجسم الطبيعية ( بالفهرنهايت ) .
    10= معامل التحويل . وكلما كان معامل الأقلمة عالياً كان ذلك دليلاً على صلاحية الحيوان في الأجواء الحارة .
    4- دراسة الحالة العامة للحيوان : من حيث طبيعة المراعي، والسلوك الفردي، والرغبة الجنسية للذكور، وانتظام الشبق في الإناث .
    5- دراسة نسب مكونات الدم، كعدد كرات الدم الحمراء وتركيز الهيموجلوبين وحجم الهيماتوكريت، لارتباطها بإمكانية أقلمة الحيوان من عدمه .

    يتبع.............
    التعديل الأخير تم بواسطة د. محمد سعيد عيسى ; 30-03-2011 الساعة 02:06 PM

  3. #23

    • د. محمد سعيد عيسى غير متواجد حالياً
    • مشرف

    تاريخ التسجيل
    Dec 2010
    العمر
    75
    المشاركات
    1,147

    افتراضي

    الطاقة المتجددة مصادرها واستخدامها
    الطاقة المتجددة نعني بها تلك المولدة من مصدر طبيعي غير تقليدي، مستمر لا ينضب، ويحتاج، فقط، إلى تحويله من طاقة طبيعية إلى أخرى يسهل استخدامها بوساطة تقنيات العصر.
    يعيش الإنسان في محيط من الطاقة، فالطبيعة تعمل من حولنا دون توقف معطية كميات ضخمة من الطاقة غير المحدودة بحيث لا يستطيع الإنسان أن يستخدم إلا جزءاً ضئيلاً منها، فأقوى المولدات على الإطلاق هي الشمس، ومساقط المياه وحدها قادرة على أن تنتج من القدرة الكهرومائية ما يبلغ 80% من مجموع الطاقة التي يستهلكها الإنسان.
    ولو سخرت الرياح لأنتجت من الكهرباء ضعف ما ينتجه الماء اليوم، ولو استخدمنا اندفاع المد والجزر في توليد الطاقة لزودنا بنصف حاجتنا منها.
    ومن كل بدائل النفط، استحوذت الطاقة الشمسية، والبدائل الأخرى المتجددة؛ مثل الرياح، والبقايا العضوية، والطاقة المولدة من حركة المد والجزر، وفي الأمواج والتدرجات الحرارية والموائع الحرارية الجوفية، استحوذت على خيال الرأي العام وصانعي القرارات واهتماماتهم على حد سواء.
    ورغم أن مزايا البدائل المتجددة معروفة جيداً، إلاّ أن هناك بعض الصعوبات التي تواجه استخدامها، فهي غير متوفرة دوماً عند الطلب، وتتطلب استثمارات أولية ضخمة، واسترداد الاستثمار الأولي فيها يستغرق زمناً طويلاً.
    وتدخل الطاقة الشمسية والمصادر المتجددة عناصر أساسية في برامج الطاقة لدى جميع البلدان، وخاصة تلك التي تتمتع بظروف شمسية أو حيوثرمية، أو رياحية جيدة.
    بدأ العالم الصناعي، وعلى رأسه الولايات المتحدة الأمريكية، يشعر بأزمة الطاقة إبان حرب أكتوبر 1973 بين الدول العربية وإسرائيل، عندما أعلنت الدول العربية المنتجة للنفط قطع إمدادات البترول عن الدول الغربية المساندة لإسرائيل. ومنذ ذلك التاريخ صارت منظمة الأوبك OPEC هي التي تحدد سعر بيع البترول وليست شركات البترول كما هو الحال من قبل. وكان لهذا الموقف تأثيره في لجوء هذه الدول إلى وسائل بديلة لتوليد الطاقة. ولم تنقض إلا ثمانية أعوام على حظر النفط، حتى تحفز المخططون ورجال الأعمال إلى التفكير جدياً في طاقة الرياح.
    خصائص وميزات الطاقة المتجددة
    1. متوفرة في معظم دول العالم.
    2. مصدر محلي لا ينتقل، ويتلاءم مع واقع تنمية المناطق النائية والريفية واحتياجاتها.
    3. نظيفة ولا تلوث البيئة، وتحافظ على الصحة العامة.
    4. اقتصادية في كثير من الاستخدامات، وذات عائد اقتصادي كبير.
    5. ضمان استمرار توافرها وبسعر مناسب وانتظامه.
    6. لا تحدث أي ضوضاء، أو تترك أي مخلفات ضارة تسبب تلوث البيئة.
    7. تحقق تطوراً بيئياً، واجتماعياً، وصناعياً، وزراعياً على طول البلاد وعرضها.
    8. تستخدم تقنيات غير معقدة ويمكن تصنيعها محلياً في الدول النامية.
    صور الطاقة المتجددة
    1. الطاقة الشمسية.
    2. طاقة الرياح.
    3. طاقة الكتلة الحية.
    4. طاقة المساقط المائية.
    5. طاقة حرارة باطن الأرض.
    6. طاقة حركة الأمواج والمد والجزر.
    7. طاقة فرق درجات الحرارة في أعماق المحيطات والبحار.
    الطاقة الشمسية
    تعتبر الطاقة الشمسية من أهم موارد الطاقة في العالم. وقد تأخر استثمارها الفعلي رغم من أهم مميزاتها إنها مصدر لا ينضب، وعلى سبيل المثال، فان المملكة العربية السعودية وحدها التي لا تزيد مساحتها على المليون ميل مربع، تتلقى يومياً اكثر من مائة مليون مليون كيلووات/ساعة من الطاقة الشمسية، أي ما يعادل قوة كهربائية مقدارها أربعة بلايين ميجاوات، أو الطاقة الحرارية التي تتولد من إنتاج عشرة مليارات من البراميل النفطية في اليوم.
    نشأة استخدام الطاقة الشمسية وتطورها
    يمتد تاريخ استخدام الطاقة الشمسية إلى عصر ما قبل التاريخ، عندما استخدم الرهبان الأسطح المذهبة لإشعال ميزان المذبح، وفي عام 212 ق. م استطاع ارشميدس Archimedes أن يحرق الأسطول الروماني وذلك بتركيز ضوء الشمس عليه من مسافة بعيدة مستخدماً المرايا العاكسة، وفي عام 1615م قام العالم سالمون دى كوكس Saomon De Caux بتفسير ما يسمى "بالموتور الشمسي" وهي مجموعة من العدسات موضوعة في إطار معين مهمتها تركيز أشعة الشمس على إناء محكم به ماء، وعندما يسخن الهواء داخل الإناء يتمدد ويضغط على الماء ويدفعه فيخرج على شكل نافورة.
    واخترع العالم الفرنسي جورج لويس لكليرك بوفن George Buffn أول فرن شمسي لطهي الطعام. وفي عام 1747 تمكن العالم الفلكي الفرنسي ج. كاسيني Jacques Casseni من صناعة زجاج حارق قطرة 112سم، مكنته من الحصول على درجة حرارة زادت عن ألف درجة مئوية كانت كافية لصهر قضيب من الحديد خلال ثواني، وصمم العالم لافوزيية La Voisier فرناً شمسياً مكنه من الحصول على درجة 1760ْ م، وأجرى ستك Stock وهينمان Heinemann، في ألمانيا، أول تجربة باستخدام الطاقة الشمسية، لصهر السيليكون، والنحاس، والحديد، والمنجنيز.
    وفي عام 1875 شهد عالم مجمعات الطاقة الشمسية تقدماً ملحوظاً، حيث صُممت آلة بخارية تولد 1.5 ك وات من الكهرباء، وفي عام 1878 استطاع أبيل بيفر Abal Pifre تشغيل ماكينة الطباعة التي تعمل بالطاقة الشمسية، وفي الفترة من 1884 ـ 1881 اخترع العالم جون إريكسون Ericson دائرة إريكسون التي تعمل بالهواء الساخن لتحويل الطاقة الشمسية إلى طاقة حركة، واستطاع العالم الإنجليزي و.آدمز W.Adams صنع غلاية تعمل بالطاقة الشمسية تنتج 2ك وات.
    وكانت الآلات الشمسية التي اخترعت في الثمانينات من القرن التاسع عشر، تعمل فقط في وجود الشمس نهاراً، في حين تتوقف عن العمل أثناء الليل وفي فترات الغيوم. وفي عام 1893 حصل العالم م. ل. سيفرى M.L Severy على براءة اختراع لآلة شمسية تعمل خلال 24 ساعة في اليوم حيث تخزن الطاقة نهاراً في بطاريات خاصة، لتُستخدم بعد غروب الشمس.
    وفي عام 1888 توصل وستون Weston إلى طريقة لتحويل الطاقة الشمسية إلى طاقة ميكانيكية، باستخدام ما يسمى "بالازدواج الحراري" حيث يمكن توليد جهد بين نقط الاتصال الساخنة الباردة بين معدنين مختلفين كالنيكل والحديد مثلاً، وفي عام 1897 صنع العالم هـ. سي. ريجان H.C. Reagan جهاز ازدواج حراري لتوليد الكهرباء باستخدام الطاقة الشمسية.
    وفي عام 1904 أُنتجت، في سانت لويس بأمريكا، آلة شمسية تنتج 5 كيلووات كهرباء، وفي عام 1905 نفذ بويل Boyle وإدوارد وايمان Edward Wyman أول آلة شمسية تنتج 15 كيلووات من الكهرباء في صحراء كاليفورنيا.
    وفي عام1911 استطاع فرانك شومان تشغيل نظام شمسي ينتج 32 كيلووات من الكهرباء وكان ذلك يعد مشروعاً اقتصادياً.
    وفي عام 1912، اضطلع شومان Shuman وبويز Boys، بتنفيذ أكبر مشروع لضخ المياه في العالم، وكان ذلك بمدينة المعادى بمصر، وقد انتج هذا المشروع 45ـ37 كيلووات، على مدى خمس ساعات تشغيل متصلة، ولكن هذا المشروع أُهمل بسبب الحرب العالمية الأولى سنة1915.
    وفي خلال الثلاثينيات، زاد الاهتمام بالطاقة الشمسية، وخاصة في مجال استخدامها في السخانات الشمسية بسعة 100ـ200 لتر، حتى بلغ عدد السخانات الشعبية فوق أسطح المنازل ربع مليون وحدة عام 1960 باليابان. وفي منتصف الثلاثينات ظهرت فكرة البطاريات الشمسية.

    يتبع................

  4. #24

    • د. محمد سعيد عيسى غير متواجد حالياً
    • مشرف

    تاريخ التسجيل
    Dec 2010
    العمر
    75
    المشاركات
    1,147

    افتراضي

    محطات توليد الكهرباء
    يمكن استخدام الطاقة الشمسية في الحصول على بخار الماء الذي يستخدم في تشغيل توربينات توليد الكهرباء. وترتكز أشعة الشمس على الغلاية بطرق مختلفة، ويمكن استخدام المرايا الأسطوانية لتركيز الأشعة.
    ويمكن تصميم محطة كهربائية تغذي حياً يتكون من ألف مسكن، ويتكون المجمع في هذه الحالة من حقل كبير من المرايا، تمثل مجموعة تعكس أشعة الشمس وتركزها على غلاية كبيرة موضوعة أعلى برج يسمى "برج القدرة".
    وتُغذي المحطة المساكن بحوالي 70% من الاحتياجات اليومية. ويستمر عمل المحطة لمدة أربع ساعات، بعد توقف المجمعات عن العمل عند غروب الشمس. ويقدر احتياج المنزل العادي بحوالي 1200 ك وات ساعة شهرياً. وبذلك يكون متوسط متطلبات الحي 1.2ميجاوات ساعة وفي حالات الذروة يرتفع الرقم ليصل إلى 3.3 ميجاوات ساعة.
    الموتورات الشمسية
    في بداية القرن العشرين الميلادي أُنشئت شركة الموتورات الشمسية في بوسطن، بالولايات المتحدة الأمريكية، بغرض إنتاج آلة شمسية اقتصادية على نطاق تجاري، لمواجهة متطلبات الطاقة لمشاريع الري الجديدة في صحراء كاليفورنيا وأريزونا، حيث لم يكن البترول قد اكتشف بعد بصورة واسعة. واستخدم الموتور لضخ المياه من الآبار، وبلغت قوة الموتور 15 حصاناً، ولم يلق مشروع الموتورات الشمسية النجاح المرتقب، وقد اشترت الحكومة المصرية إحدى الوحدات وذلك لتركيبها في الخرطوم بالسودان. كما طلبت حكومة جنوب أفريقيا شراء وحدتين، ولم تسوق الشركة أي وحدة في الولايات المتحدة.
    البطاريات الشمسية
    بعد الحرب العالمية الثانية أعلنت شركة بل Bell للتليفونات اكتشاف البطاريات الشمسية، وقد ساعد ارتياد الآفاق لعالم الفضاء على زيادة الاهتمام بالبطاريات الشمسية. وفي عام 1959 حمل القمر الصناعي فان جارد Vanguard عدداً من البطاريات الشمسية لتزويد محطة اللاسلكي بالطاقة اللازمة. وقد حققت وكالة أبحاث الفضاء الأمريكية "ناسا" خلال الستينيات، تطورات هائلة في مجالات البطارية الشمسية لتوفير الطاقة لمركبات الفضاء، ويمكن للبطارية تخزين كمية من الطاقة بمعدل 22_44وات ساعة / كجم من وزنها، وتمكنت وكالة ناسا من صنع بطارية سعتها 125 وات بفرق جهد 4 فولت وكفاءتها 3% وقدرت التكاليف في حدود 0.1 دولار لكل كيلووات ساعة. وكذا أمكن صُنع بطارية سعتها 1كيلووات في القسم النووي العام لشركة جنرال دينامكس الأمريكية.
    أنواع البطاريات الشمسية
    1 بطارية السيليكون .
    تُعد بطاريات السيليكون أوسع البطاريات الشمسية استخداماً وتطويراً في العالم، وتُصنع طبقاً لتقنية أنصاف الموصلات، ويعد عنصر السيليكون عنصراً متزناً كيماوياً، ويمكن استخدامه في صناعة بطاريات شمسية تمتاز بطول عمرها، وإذا أرادت الولايات المتحدة الأمريكية أن تستخدم هذه البطاريات في توليد قدر من الكهرباء يفي باحتياجاتها، فإنها تحتاج إلى نحو مليوني طن من فلز السيليكون، بينما، حالياً، لا تنتج سوى 90 طناً فقط في العام.
    2. بطارية كبريتيد الكاديوم
    تُستخدم لأغراض الفضاء، وهي حساسة جداً لبخار الماء، ولذا يجب وضعها في كبسولات محكمة، حتى يمكن استخدامها للأغراض الأرضية؛ ونظراً لأن الكاديوم له تأثير سام على الإنسان، لذا يلزم الحرص أثناء تداول هذه البطاريات. ولذلك استخدم سيلنيد الزنك لصناعة هذه البطاريات، بدلاً من كبريتيد الكاديوم، لأنه أقل خطراً.
    3. بطارية خارصينيد الجاليوم:
    تمتاز هذه البطاريات بقدرتها الزائدة على امتصاص الفوتونات الضوئية، ويمكن استخدامها في درجات حرارة أعلى من تلك التي تستخدم عندها بطاريات السيليكون أو كبريتيد الكاديوم، وتستخدم هذه البطاريات تقنيات متقدمة وطرقاً متعددة لإنتاجها.
    طاقة الرياح
    في مطلع عام 1981 أصبحت طاقة الرياح مجالاً سريع النمو، حيث أسفرت الجهود والطموحات التي بذلت خلال السبعينيات في البحث والتطوير عن ثروة من الدراسات الحديثة التي أثبتت أن طاقة الرياح مصدر عملي للكهرباء. إذ يجري الآن تركيب أعداد ضخمة من الآلات التي تعمل بالرياح في كثير من البلاد، للمرة الأولى، منذ ما يزيد على الخمسين عاماً.
    ولهذه الآلات سوق ضخمة تزداد نمواً في المناطق النائية، حيث الكهرباء وقوى الضخ التي تمد بها محركات الديزل الشبكات الكهربائية الصغيرة باهظة الثمن.
    فمضخات الري التي تعمل بالرياح تنتشر الآن في أستراليا، وأجزاء من أفريقيا، وآسيا، وأمريكا اللاتينية. وربما تستخدم الرياح، في القريب العاجل، لتوليد الكهرباء في المزارع والمنازل بتكلفة أقل مما يتقاضاه مرفق الكهرباء المحلي.
    وقد يتطلب إسهام التوربينات الريحية الكبيرة بقسط وافر في إمداد الطاقة العالمي وقتاً أطول قليلاً. فهذه التوربينات ليست آلات بسيطة، حيث إنها تتضمن أعمالاً هندسية متطورة، بالإضافة إلى نظم تحكم ترتكز على الحاسبات الإلكترونية الدقيقة. وهناك شركات كثيرة في الولايات المتحدة الأمريكية وبضعة بلاد أخرى لديها برامج بحثية في مجال طاقة الرياح، وخطط عديدة للاعتماد على هذا المصدر للطاقة.
    إن الظروف مهيأة تماماً لكي تنتقل هذه التقنية سريعاً، من مرحلتي البحث والتخطيط، إلى الواقع التجاري. وقد تتوافر قريباً عشرات الملايين من التوربينات والمضخات الصغيرة التي تلبي احتياجات مناطق العالم الريفية، ومن الممكن ربط مجموعات من الآلات الريحية الكبيرة بشبكات الكهرباء التابعة لشركات المنافع العامة. وفي خلال السنوات الأولى لهذا القرن، يمكن لبلاد كثيرة أن تحصل على ما بين 20% و30% من احتياجاتها من الكهرباء بتسخير طاقة الرياح. وسيكون لتقنية طاقة الرياح الحديثة، التي تستغل هذا المصدر النظيف الاقتصادي المتجدد للطاقة، مكانها في عالم ما بعد النفط.
    تسخير الرياح
    إن ما يقرب من2% من ضوء الشمس الساقط على سطح الكرة الأرضية يتحول إلى طاقة حركة للرياح. وهذه كمية هائلة من الطاقة تزيد كثيراً على ما يستهلك من الطاقة في جميع أنحاء العالم في أي سنة من السنين.
    وهناك ظاهرتان ميترولوجيتان أساسيتان تتسببان في الجزء الأعظم من رياح العالم. فينشأ نمط ضخم لدوران الهواء من سحب الهواء القطبي البارد نحو المنطقتين المداريتين، ليحل محل الهواء الأدفأ والأخف الذي يصعد ثم يتحرك نحو القطبين. وتنشأ مناطق ضغط عالٍ ومناطق ضغط منخفض، وتعمل قوة دوران الأرض على دوران الهواء في اتجاه حركة عقرب الساعة في نصف الكرة الجنوبي، وفي عكس اتجاه حركة عقرب الساعة شمال خط الاستواء، وهذان الخطان هما المسئولان عن سمات الطقس الرئيسية كالرياح التجارية المستمرة في المناطق المدارية، والرياح الغربية السائدة في المناطق المعتدلة الشمالية. والسبب الآخر للرياح البعيدة المدى، هو أن الهواء الذي يعلو المحيطات لا يسخن بالقدر الذي يسخن به الهواء الذي يعلو البر. وتنشأ الرياح عندما يتدفق هواء المحيط البارد إلى البر ليحل محل الهواء الدافئ الصاعد.
    والنتيجة النهائية هي نظم للطقس غير مستقرة ودائمة التغير. إن طاقة ضوء الشمس الحرارية تتحول باستمرار إلى طاقة حركة للرياح. ولكن هذه الطاقة تتغير عن طريق الاحتكاك مع سطح الأرض وفي داخل الرياح ذاتها. وجزء صغير من طاقة الرياح هو الذي يمكن الاستفادة به فعلاً. فمعظم الرياح تهب في الارتفاعات العالية أو فوق المحيطات، وعلى ذلك فهي بعيدة المنال.
    وتسخير طاقة الرياح ليست فكرة جديدةً، فقد استخدمت في السفن الشراعية. وظهرت بعدها طواحين الهواء، وهي آلات تستلب طاقة الرياح، لتؤدي أعمالاً ميكانيكية متنوعة. وتظهر أول إشارة لطواحين الهواء في كتابات العرب في العصور الوسطى، فقد وصفوا آلات ريحية بدائية في فارس في القرن السابع الميلادي. وقد طُورت آلات مماثلة لها في الصين، واستخدمت منذ 2000 عام على الأقل.
    وأُدخلت طواحين الهواء في أوربا في وقت ما قبل القرن الثاني عشر، وبحلول القرن الخامس عشر وجدت أشكالاً متطورة من هذه التقنية في جميع أنحاء أوربا، وفي هولندا بلغ عدد الآلات التي كانت مستخدمة في تلك الحقبة نحو 12 ألف آلة
    والدانمارك التي تفتقر بدرجة عظيمة إلى الوقود الحفري المحلي بأنواعه المختلفة، أُنتجت طواحين هواء محسنة واستخدمتها للإمداد بربع الطاقة الصناعية في البلد في عام1900، وبحلول أواخر القرن التاسع عشر كان ما يقدر بستة ملايين مضخة مائية مستخدمة في الولايات المتحدة.
    وقد أنتج مهندس في الدانمارك آلة ريحية لتوليد الكهرباء في عام 1890 بعد إنتاج الكهرباء بواسطة محرك تجاري للمرة الأولى بوقت قصير. وظهرت سوق مزدهرة لهذه التوربينات الريحية الجديدة في الدانمارك والولايات المتحدة الأمريكية وبضعة بلاد أخرى خلال العشرينات والثلاثينات من هذا القرن.
    وصمم الباحثون في بريطانيا، والدانمارك، وفرنسا، والاتحاد السوفيتي، والولايات المتحدة، وألمانيا توربينات ريحية بريش أقطارها 20 متراً أو أكثر وقدرة كهربائية زادت على 100 كيلووات.
    وفي الولايات المتحدة الأمريكية طور توربين سميث وبوتنام الريحي خلال الأربعينات،وكان نموذجاً لتقنية متقدمة للمشروعات البحثية خلال هذه الحقبة، وكانت تديرها ريش ضخمة من الصلب الذي لا يصدأ، وقدرتها 1250 كيلووات، وهذا الرقم لم تصل إليه آلة أخرى حتى السبعينيات وتتسم الآلات الريحية الجيدة التصميم بقدر من البساطة والدقة، ساعد على اقتناع الكثيرين من العلماء والمهندسين بالنجاح العظيم الذي تبشر به تقنيات الطاقة المتجددة.
    وتعتمد الطاقة المتاحة في الرياح بصورة حاسمة على سرعتها، حيث تتضاعف الطاقة إلى ثمانية أمثالها كلما زادت سرعة الرياح إلى المثلين. والمتوسط السنوي لسرعة الرياح يتفاوت من أقل من ستة أميال في الساعة في بضع مناطق، إلى 20 ميلاً في الساعة في بعض المناطق الجبلية والساحلية. والسرعات التي تبلغ أو تزيد على 12ميلاً في الساعة في المتوسط وهي السرعات المناسبة لكي تكون الآلة الريحية المولدة للكهرباء اقتصادية، ويمكن أن تتوافر في مناطق واسعة. وتبلغ طاقة الرياح الكونية المتوقعة ما يعادل تقريباً خمسة أضعاف الاستخدامات الكهربائية الحالية على مستوى العالم، وحيث إن القوى المتاح توليدها من الرياح ترتفع بارتفاع مكعب سرعة الرياح، لذلك فإن المناطق ذات الرياح الشديدة سوف تشهد تطوراً كبيراً في هذا المجال.
    وفي الولايات المتحدة الأمريكية ظهر أن توربينات الرياح التي ركبت على 6% من مساحة الأرض يمكن أن تفي بما يوازي 20% من احتياجاتها من الكهرباء. وتكفي ثلاث ولايات أمريكيةـ هي نورث وساوث داكوتا، وولاية تكساس، ورغم أن أحداً لا يتوقع تنفيذ مثل هذه الخطة، فمن الواقع أن القوى المحركة المولدة من الرياح سوف تصبح مكوناً أساسياً في شبكة الكهرباء في أمريكا الشمالية.
    الصعوبات التي تواجه استخدام طاقة الرياح
    الريح، مثلها مثل باقي أنواع الطاقات المتجددة، لا يمكن الاعتماد عليها بصفة مستديمة،فأي بقعة على الأرض قد تتعرض لرياح عاتية في بعض الأوقات، وقد تتوقف عندها الريح تماماً في أوقات أخرى وللتغلب على مشكلة تذبذب الطاقة، نتيجة لتغير سرعة الريح، يجب أن يواكب برنامج إنشاء محطات قوى تعمل بطاقة الريح برنامجاً آخر لحفظ الطاقة، إما على صورة طاقة كهربية في بطاريات، أو طاقة ميكانيكية تستخدم في رفع المياه إلى أعلى فوق جبل مثلاً، ثم إعادة استخدام هذه المياه في توليد الكهرباء عندما تضعف الرياح.
    اقتصاديات طاقة الريح، وبرامج بعض الدول من أجل استغلالها
    تنتج التوربينات الريحية الصغيرة بأحجام وأشكال كثيرة، ويتركز معظم النشاط الإنتاجي على الآلات التي يمكنها توليد ما يتفاوت من كيلووات واحد إلى 15 كيلووات، وتقل أقطار ريَشُه عن 12متراً. والمنزل الأمريكي النموذجي الكائن في منطقة يزيد فيها متوسط سرعة الرياح على 12 ميلاً في الساعة، يمكن أن يحصل على معظم احتياجاته من الكهرباء باستخدام توربين ريحي تتراوح قدرته بين ثلاثة وخمسة كيلووات. وتتفاوت تكاليف نظام طاقة الرياح، الذي يعد للوفاء باحتياجات مثل هذا المنزل، من خمسة آلاف إلى 20 ألف دولار أمريكي.
    وهناك توربين الأماكن النائية النموذجي، وهو صغير ومتين، ويولد تياراً مستمراً يمكن اختزانه في بطاريات، لاستخدامه عندما لا تكون الرياح شديدة. وتستخدم الآن 20 ألف توربين ريحي في الأماكن النائية، في نقط مراقبة الحرائق، والمطارات النائية، والمزارع المنعزلة في أستراليا، وعلى العوامات الطافية لإرشاد السفن بعيداً عن ساحل شيلي، وفي الأماكن المقامة بها الأكواخ الجبلية بسويسرا.
    وتوجد صناعات نشيطة للتوربينات الريحية في أستراليا والدانمارك وهولندا والسويد والولايات المتحدة وبضعة بلاد أخرى.
    والتوربينات الريحية عادة أرخص في الاستخدام من المولدات التي تعمل بالديزل، خاصة في المناطق التي تكون الحاجة فيها إلى الكهرباء قليلة جداً. ومع هذا فإن هذه النظم الصغيرة للطاقة الريحية باهظة الثمن، فهي تولد الكهرباء بسعر يزيد كثيراً على 20 سنتاً للكيلووات ساعة ـ أي أعلى كثيراً من سعر الكهرباء التي تولد مركزياً في معظم البلاد. وذلك؛ لأن الكهرباء التي تولدها يجب أن تخزن في بطاريات، وهذه عملية مرتفعة التكلفة جداً.
    المزج بين الكهرباء المولدة بالرياح والشبكة المركزية للكهرباء
    في السنوات الأخيرة أنتج نظام مختلف تماماً، يمكن استخدامه مقترناً مع الكهرباء المستمدة من مرفق توليد الكهرباء. فبدلاً من أن تنتج هذه التوربينات الريحية تياراً مستمراً، توصل بمولد حتى ينتج تياراً متردداً ـ مماثلاً تماماً للكهرباء التي يحملها معظم خطوط المرفق. وهناك آلات جديدة أخرى يستخدم فيها محول متزامن لأداء هذا العمل نفسه. وبهاتين التقنيتين، يمكن استخدام الكهرباء المستمدة من الشبكة المركزية مع الكهرباء الريحية في المنازل وأماكن العمل. وبدلاً من أن يضطر مستخدم هذه التوربينات إلى الاعتماد على البطاريات أثناء سكون الرياح، فإنه يسحب الكهرباء من المرفق العام كأي عميل عادي. وعندما تكون الرياح وفيرة، والحاجة إلى الكهرباء قليلة، يمكن إعادة إدخال الطاقة الزائدة في خطوط المرفق العام، فيعمل عداد العميل في الاتجاه العكسي. وهكذا يصبح مالك الآلة الريحية منتجاً للكهرباء، بالإضافة إلى كونه مستهلكاً لها، وتكون شبكة المرفق العام هي في الواقع بطارية العميل.
    تطور الاستخدام
    تشير الدراسات إلى أن هناك 3.8 مليون منزل بالأنحاء الريفية بالولايات المتحدة، تصلح مواقع مناسبة، على وجه الخصوص، للمولدات الريحية الصغيرة، وما يزيد على 370 ألف مزرعة. ويمكن، على أساس هذه الدراسة، تقدير أنه من الممكن أن يكون في الولايات المتحدة الأمريكية في يوم من الأيام عدد كبير من التوربينات الريحية الصغيرة العاملة يصل إلى خمسة ملايين توربين، تمد بنحو 25 ألف ميجاوات من القدرة المولدة للكهرباء ـ أي نصف ما تمد به .
    الطاقة النووية حالياً.
    وتحتل الولايات المتحدة مكان الصدارة في مجال تطوير الآلات الريحية، فمنذ عام 1975 بدأت إدارة شئون الطيران والفضاء "ناسا" ا لعمل في سلسلة من التوربينات الأفقية المحور المطردة الكبر، وقد أصبح هذا البرنامج تحت إشراف وزارة الطاقة الآن، وتكفلت حديثاً بإنشاء ثلاثة توربينات بقدرة 2500 كيلووات في وادي نهر كولومبيا الشديد الرياح في الجزء الشمالي الغربي على ساحل المحيط الهادي.
    وقد صممت شركة بوينج آلة ضخمة مذهلة لها ريشتان ترسمان قوساً يبلغ قطره 100 متراً تقريباً. يمكن رؤيتها من مسافة 5 أميال في اليوم الصحو.
    وتستخدم الطاقة لإدارة مولد متزامن يدفع بالكهرباء مباشرة في الشبكة الكهربائية التابعة لإدارة الكهرباء لمنطقة بونفيل. ومن المتوقع أن تولد هذه الآلة الكهرباء بسعر ابتدائي قدره ثماني سنتات تقريباً للكيلووات ساعة.
    ويأمل المسئولون الرسميون في الدانمارك أن تعرض، قريباً في الأسواق، آلة من إنتاجهم تبلغ قدرتها 630 كيلووات. وهناك واحدة من كبريات الشركات الهندسية في إنجلترا تصنع محطات توليد الكهرباء بالطاقة النووية، وتقوم هذه الشركة بتصميم توربين ريحي قدرته 3 آلاف كيلووات بتمويل حكومي. وطورت شركة بندكس وشركة هاملتون ستاندارد بالولايات المتحدة الأمريكية آلتين أفقيتين المحور قدرتاهما ثلاثة آلاف، وأربعة آلاف كيلووات.
    وفي ألمانيا برنامج يسمى برنامج جرويان Growian program يتضمن 25 مشروعاً، بعضها لإنتاج مراوح صغيرة لإنتاج طاقة كهربائية في حدود 15 كيلووات، لاستخدامها في الدول النامية ومشروع آخر لإنتاج مراوح عملاقة يصل قطر المروحة إلى 50 متر، وقدرتها 265 كيلووات ساعة.
    وتستخدم إسرائيل الطاقة الهوائية المستمدة من الرياح بكميات اقتصادية، وحيث أقامت محطات تحوي أبراجاً عالية في مناطق الجليل الأعلى، والكرمل، وبني عامر، وعرانة في النقب، وقامت بتركيب توربينات الرياح بقدرة 1200 إلى 1300 كيلووات ساعة.
    الطاقة المائية
    تُعد الشمس الطاقة الميكانيكية في المياه المتدفقة حيث إن 23% من الطاقة الشمسية التي تصل الأرض تسقط على سطح البحار والأنهار والمحيطات فيتبخر الماء منها ويتصاعد بخار الماء مع الهواء إلى طبقات الجو العليا، فيبرد ويكوّن السحب التي تسير، مع الهواء، إلى مناطق بعيدة، وإذا ما قابلت سفوح الجبال، فإنها تبرد وتتحول، ثانياً، إلى ماء أو برد يهطل فوق هذه الجبال، ومنها يندفع إلى أسفل بسرعة كبيرة، فيكون المجارى المائية والأنهار. جزء آخر من الأمطار يتجمع فوق الجبال في بحيرات كبيرة، حتى إذا ما امتلأت، فاض منها الماء هابطاً إلى أسفل مكوناً المساقط المائية.
    ولكي يمكن استغلال طاقة الوضع المكتسبة في كميات الماء الهائلة المخزونة في هذه البحيرات، توضع بوابات عند مخارج هذه البحيرات، بحيث يمكن، عن طريقها، التحكم في معدل سقوط الماء. وطاقة الوضع تساوى وزن الماء المخزون في البحيرة مضروبا في ارتفاع البحيرة، عن النقطة التي ستُستغل عندها هذه الطاقة.
    طاقة الوضع = كتلة الماء × عجلة الجاذبية الأرضية × الارتفاع.
    وعند اندفاع الماء المخزون في البحيرة إلى أسفل تتحول طاقة الوضع إلى طاقة حركة، فإذا ما سقطت على توربين متصل بمولد كهرباء، تتحول طاقة الحركة هذه إلى طاقة ميكانيكية تدير التوربين، وتولد الكهرباء، وكفاءة توليد الطاقة الكهربائية من المساقط المائية تصل إلى 85% وهى أعلى من كفاءة توليد الكهرباء بواسطة المحطات الحرارية.
    أخذت دول كثيرة في إنشاء السدود عند منافذ البحيرات المرتفعة، وفي مناطق الشلالات. وفي البلاد التي بها أنهار يمكن بناء السدود والخزانات الكبيرة على مجارى هذه الأنهار، واستخدام ارتفاع منسوب المياه وراء السد في إدارة التوربينات لتوليد الكهرباء. كما هو الحال عند السد العالي المقام على بحيرة ناصر في أسوان في مصر وينتج سنوياً 8663 جيجا وات ساعة.
    ميزات استخدام محطات توليد الطاقة الكهربية المائية
    1. لا تُحدث تلوثاً للبيئة.
    2. رأس المال المنفق يتمثل في بناء السد أو الخزان، وهذا يفيد في تنظيم الري، إلى جانب توليد الكهرباء.
    3. كفاءة توليد الكهرباء من الطاقة المائية عالية تصل إلى 85%، بينما في المحطات الحرارية لا يتعدى 40%، ومن الخلايا الشمسية 15 %.
    4. لا تحتاج إلى تكاليف عالية للصيانة.
    5. التوربينات المائية سهلة التركيب والتشغيل.

    طاقة المد والجزر
    المد والجزر من مصادر الطاقة الميكانيكية في الطبيعة، وهذه الظاهرة تنشا عن التجاذب بين الأرض والقمر، ويكون تأثير قوى التجاذب كبير في المنطقة التي يتعامد عليها القمر على سطح الأرض، ولا يتأثر سطح اليابس بهذه القوة بينما يتأثر سطح الماء.
    وفي المحيطات ينبعج الماء إلى أعلى، وينجذب كذلك مركز الأرض في اتجاه القمر؛ مما يسبب مداً آخر في المنطقة المقابلة من الأرض. وأول من قدم تفسيراً عملياً لهذه الظاهرة هو عالم الفلك الألماني جوهانس كبلر Johannes Kepler حيث ربط بين حركات الماء في ارتفاعها وانخفاضها، وبين أوضاع كل من الشمس والقمر، ثم جاء العالم البريطاني إسحاق نيوتن Isaac Newton ووضع قوانينه الخاصة عن الجاذبية بين مختلف الأجسام، وبذلك وضع الأساس الذي تقوم عليه النظرية الحديثة التي تفسر ظاهرة المد والجزر.
    ونظراً لحركة الأرضحول نفسها مرة كل 24 ساعة، وأن جذب القمر يحدث مداً في نقطتين متقابلتين على سطح الأرض في آن واحد، فان الفترة الزمنية بين كل مَدْين متتاليتين هو 12 ساعة. وتظهر ظاهرة المد بوضوح في بعض الخلجان بالمحيطات. وفي بعض المناطق يصل ارتفاع الماء أثناء المد إلى 15 متراً، حيث يمكن استغلال هذه الظاهرة مصدراً لتوليد الطاقة الكهربائية.
    استخدام طاقة المد في توليد الكهرباء
    تستخدم طاقة المد في توليد الكهرباء عن طريق بناء سد عند مدخل الخليج الذي يتمتع بفرق كبير في منسوب الماء بين المد والجزر، وتوضع توربينات توليد الكهرباء عند بوابة هذا السد.
    ففي فترة المد يرتفع منسوب الماء في المحيط أمام بوابات السد، فتفتح البوابات شيئاً فشيئاً، ويدخل الماء من المنسوب المرتفع خارج الخليج إلى المنسوب المنخفض داخله، فيدير توربينات توليد الكهرباء وتغلق البوابات بعد ذلك.
    وعندما ينحصر المد، وينخفض منسوب المياه في المحيط أمام السد، تفتح البوابات شيئاً فشيئاً، فيندفع الماء من المنسوب المرتفع داخل الخليج، إلى المنسوب المنخفض في المحيط فيدير توربينات الكهرباء بما فيه من طاقة وضع وقد تحولت إلى طاقة حركة.
    تغلق البوابات بعد ذلك حتى يبدأ المد مرة أخرى بعد 12 ساعة فتعود الدورة من جديد. لذلك هناك أربع دورات لتوليد الكهرباء في اليوم الواحد. اثنتان أثناء المد ودخول الماء من المحيط إلى داخل الخليج، واثنتان أثناء الجزر وخروج الماء من الخليج إلى المحيط.
    وقد أنشأت بعض الدول محطات كهربائية تعمل بطاقة المد والجزر، مثل فرنسا. وفي الولايات المتحدة الأمريكية محطة قرب شاطئ بريتاني، عند مدخل نهر رانس، قدرتها 240 ميجاوات، وهناك خطة لاستغلال طاقة المد والجزر في توفير 1% من احتياجاتها في الطاقة، وهناك مشروع آخر تحت الدراسة، يزمع إقامته على الشواطئ الغربية لنوفاسكوتشيا، حيث يبلغ ارتفاع موجة المد نحو 8.7 متر، عند دخولها نهر انابوليس. وعند خروج المياه إلى البحر، أثناء الجزر، تدفع توربينات يتوقع لها أن تولد نحو 20 ميجاوات.
    كذلك بنى الاتحاد السوفيتي، سابقاً، محطة مشابهة على مدخل نهر كميلسايا، لا تزيد قدرتها على توليد أكثر من 400 كيلو وات.
    الطاقة الغازية
    يعد غاز الهيدروجين على رأس قائمة أنواع الوقود التي يمكن استخدامها بعد أن تُستنفذ أنواع الوقود التقليدية، إذ إنه من أكثر الغازات وفرة في هذا الكون، وهو يمثل المادة الخام بقلب كل النجوم، ورغم وفرته في قلب النجوم وفي الفراغ الواقع بين المجرات، إلا أن الغلاف الجوي للأرض لا يتوافر به غاز الهيدروجين الحر الطليق.
    ويستخدم غاز الهيدروجين حالياً في الصناعة في كثير من الأغراض، لذلك فهو يُحضر بكميات كبيرة تصل نحو 10 تريليونات قدم مكعب في العالم، ويمكن الحصول عليه بالتحليل الكهربائي للماء، وهذه الطريقة تُعطي غازاً نقياً بدرجة كبيرة، ولهذا تعد المياه المتوافرة في البحار والمحيطات المصدر الرئيسي لهذا الغاز وذلك بطريقة التحليل الكهربائي للماء، ويمكن الحصول على التيار الكهربائي اللازم من الطاقة الشمسية.
    وقد استُخدم غاز الهيدروجين في توليد الكهرباء بوساطة خلايا الوقود، وهو لا يسبب أي تلوث للبيئة، إذ إنه عندما يحترق يعطي بخار الماء الذي يعد مكوناً طبيعياً من مكونات الهواء.
    خلايا الوقود
    تُصنع خلية الوقود المُبسطة من قطبين من الكربون مُحملين بقليل من فلز البلاتين الذي يعد عاملاً مساعداً في حمض الكبريتيك. وعند إمرار تيار من غاز الهيدروجين على أحد هذين القطبين، وإمرار تيار من غاز الأكسجين، أو من الهواء، على القطب الثاني فان مثل هذه الخلية البسيطة تعطى فولتاً واحداً من التيار المستمر، ويمكن تجميع مثل هذه الخلايا على هيئة أعمدة كبيرة، يتكون كل منها من عشرات من هذه الخلايا للحصول على الجهد اللازم.
    تمتاز خلايا الوقود بأنها لا يُنتج عن تشغيلها ضوضاء أو ضجيج مثل بقية محطات القوى الأخرى، ولذلك فانه يمكن إقامة محطات توليد الكهرباء التي تدار بخلايا الوقود في أي مكان في وسط المدن وفي المناطق الآهلة بالسكان، مما يوفر قدراً كبيراً من التكاليف عند توزيع الطاقة الكهربائية الناتجة منها.
    ويمكن استخدام وحدات مجمعة صغيرة من هذه الخلايا لتوفير الطاقة في بعض المباني الكبيرة، أو في بعض المتاجر الضخمة، التي قد تحتاج من 25 ـ 200 كيلووات من الكهرباء، ويقدر الباحثون في هذا المجال، أن كفاءة توليد الكهرباء من هذه الخلايا ستصل مستقبلا إلى نحو 80%.
    وتحتاج خلايا الوقود عند استخدامها في توليد الكهرباء إلى جهاز يحول الوقود إلى غاز غني بالهيدروجين، وجهاز آخر يحول التيار المستمر الناتج منها إلى تيار متردد حتى يتمشى مع تيار الشبكة الكهربائية العادية.
    فوائد استخدام الطاقة المتجددة
    في المجال العسكري
    من أهم التطبيقات العسكرية للطاقة المتجددة استخدامها في تيسير الحياة في المدن العسكرية الجديدة، والوحدات المتمركزة بالمناطق النائية، وتنمى المصادر المختلفة للطاقة المتجددة لشتى الأغراض؛ لتوليد الكهرباء، وتحلية مياه البحر، والطهي، واستخدام الأنظمة المركزية للسخانات الشمسية، بغرض توفير متطلبات الإيواء للتجمعات العسكرية في المناطق النائية، ومن أهم التطبيقات المستخدمة في المجال العسكري للطاقة المتجددة الآتي:
    1. نظام التسخين الشمسي للكليات العسكرية لاستخدامات الطلبة.
    2. استخدام السخانات الشمسية الميدانية؛ لإمداد الوحدات بالمياه الساخنة للجنود.
    3. إمداد المناطق السكنية والمدن العسكرية بالسخانات الشمسية.
    4. تحلية المياه.
    نظراً للدور الحيوي الذي يمكن أن تؤديه الخلايا الشمسية في توليد الكهرباء في المناطق النائية فقد أُدخلت هذه التقنية في مجال الاستخدام العسكري المتمثل في الآتي:
    أ. تغذية المحطات اللاسلكية الثابتة.
    ب. تغذية الأجهزة اللاسلكية المحمولة بواسطة الأفراد.
    ج. في ثلاجات تبريد الأغذية.
    وتتطلب طبيعة عمل القوات المسلحة ضرورة تواجد الأفراد والمعدات في المناطق النائية سواء على الحدود الدولية أو في الصحراء، وتحتاج هذه القوات إلى حفظ الطعام لمدة كبيرة لذلك استخدمت الثلاجات التي تُبرِد بالطاقة الشمسية.
    د. تستخدم الطاقة الشمسية في توليد الكهرباء لأغراض الإنارة، وإدارة الطلمبات لاستخراج المياه الجوفية.

    تحظى طاقة الرياح بنصيب كبير في التطبيقات العسكرية، حيث تستغل بقدرات عالية، مما يتيح تنفيذ مشروعات لطاقة الرياح على مستوى كبير كالآتي:
    1. تستخدم طاقة الرياح مع نظام مشترك للديزل بالاستعانة بالحاسب الآلي للتحكم والمراقبة، وتعطي المروحة الواحدة 200 كيلووات ساعة فلو استُخدمت خمس مراوح، أمكن توفير ميجاوات واحد ساعة، كافية لتوفير طاقة كهربائية لمنطقة عسكرية، ووحدات السيطرة الخاصة بها، ويتم نقل الكهرباء باستخدام الكابلات الهوائية المعزولة المعلقة على أعمدة خشبية، وذلك لمراعاة النواحي العملياتية، بحيث تمنع أي تداخل يحتمل على أجهزة الرادار، كما تعطي فرصة لزيادة عدد الخطوط الكهربائية، دون الحاجة إلى استخدام أعمدة إضافية، كما أن استخدام الكابلات الهوائية المعزولة يمنع أي تداخل ناتج عن الموجات الكهرومغناطيسية من الكابل مع أجهزة الإرسال والاستقبال اللاسلكي.
    2. تستخدم طاقة الرياح في تحلية مياه البحر، لاستخدامها في المناطق العسكرية النائية التي تفتقر إلى وجود المياه العذبة، وكذا في المناطق الصحراوية القريبة من البحر.

    استخدام الطاقة المولدة من الكتلة الحيوية
    لقي موضوع توليد الطاقة من المخلفات العضوية بالتخمير اللاهوائي وهو ما يعرف باسم تقنية الإنتاج الحيوي، اهتماماً كبيراً في جميع التطبيقات، وتجدر الإشارة إلى أن تكنولوجيا الغاز الحيوي لا تسهم في حل مشكلة الطاقة فحسب، ولكنها تسهم أيضاً في حل مشكلتي نقص الغذاء، وزيادة التلوث البيئي.
    وتمثل تقنية الغاز الحيوي أهمية خاصة في الاستخدامات العسكرية؛ نظراً لكونها وسيلة لمكافحة التلوث، وإعادة استخدام مياه الصرف الصحي، ومخلفات المطابخ، في المعسكرات والمدن العسكرية.
    استخدام الطاقة المتجددة في المجال المدني
    1. الاستخدام المنزلي التجاري
    أ. تسخين المياه لأغراض الاستحمام والغسيل والتنظيف، باستخدام المجمعات الشمسية دون تحويلها إلى أي شكل آخر من أشكال الطاقة. وهو أرخص وأنظف أنواع الطاقة على الإطلاق.
    ب. يُعد تسخين المياه بالطاقة الشمسية مستخدماً المسطح الماص الشمسي من التقنية الجاهزة المتقدمة اقتصادياً، التي قد انتشرت بصورة عريضة في أكثر من استخدام.
    ج. تسخين المياه بالطاقة الشمسية، لا يمثل بنداً أساسياً في ميزانية الدولة.

    2. الاستخدام الزراعي
    أ. تجفيف المنتجات الزراعية.
    ب. الصوبات الشمسية.

    3. الاستخدام الصناعي
    أ. اتجهت بعض المصانع لاستخدام الطاقة الشمسية في بعض عمليات التسخين والتبخير، خاصة في مصانع الأغذية، والبلاستيك، والصباغة، بالإضافة إلى المخابز الآلية، والعديد من الصناعات الأخرى التي تتطلب درجة حرارة متوسطة أو منخفضة.
    ب. تقطير المياه.
    ج. شحن بطاريات محطات التقوية التليفزيونية واللاسلكية.
    د. إضاءة الممرات الملاحية.
    هـ. أجهزة الإنذار الملاحية.
    و. نظام تشغيل مكبرات الصوت.
    ز. تشغيل التليفزيونات في الساحات الشعبية.
    ح. ثلاجات حفظ الأدوية في الوحدات الصحية.
    ط. شحن البطاريات الكهربائية.
    ى. مضخات الري الشمسية لرفع المياه لري الأراضي الزراعية.
    ك. تشغيل وحدات تحلية المياه.
    ل. كهربة القرى النائية.

    يتبع...........
    التعديل الأخير تم بواسطة د. محمد سعيد عيسى ; 01-04-2011 الساعة 04:01 PM

  5. #25

    • شلبي سعيد غير متواجد حالياً
    • الادارة العامــــة للمـــــوقع

    تاريخ التسجيل
    Apr 2009
    الدولة
    مصر الحبيبة
    العمر
    44
    المشاركات
    3,575

    افتراضي

    سلمت يداك دكتور محمد
    بانتظار التتمة
    جعلة الله بميزان حسناتك
    دمت بخير ورخاء

    الرواء للتنمية الزراعية
    مبيدات - اسمدة - شتلات - صوب زراعية
    اشراف زراعى والمتابعة - شبكات رى -
    عمل دراسات جدوى للمشروعات الزراعية
    ادارة
    مهندس / شلبى سعيد

    01221627822
    01068334230
    ايميل
    shalaby_said2002@yahoo.com



  6. #26

    • د. محمد سعيد عيسى غير متواجد حالياً
    • مشرف

    تاريخ التسجيل
    Dec 2010
    العمر
    75
    المشاركات
    1,147

    افتراضي

    الاخ شلبى بك
    رغم ان مرورك على متصفحى عزيزا الا انه اثلج قلبى بحق
    بارك الله فيك
    وان شاء سوف نتممها
    بس لسه كتير
    ودمت فى ود وخير

  7. #27

    • هبه محمد غير متواجد حالياً
    • عضو

    تاريخ التسجيل
    Jan 2011
    الدولة
    مصر
    العمر
    40
    المشاركات
    147

    افتراضي

    مجهود رااائع استاذنا الجليل
    جزاك الله كل خير علي الافاده

  8. #28

    • د. محمد سعيد عيسى غير متواجد حالياً
    • مشرف

    تاريخ التسجيل
    Dec 2010
    العمر
    75
    المشاركات
    1,147

    افتراضي


    فاضلتى هبه محمد
    اشكركى جل شكرى على مرورك الطيب
    وبارك الله فيكى وذادك من فيض علمه
    ودمتى فى خير وود

  9. #29

    • د. محمد سعيد عيسى غير متواجد حالياً
    • مشرف

    تاريخ التسجيل
    Dec 2010
    العمر
    75
    المشاركات
    1,147

    افتراضي

    أنواع المفاعلات

    1 - مفاعل الماء المغلي



    إلى اليسار خزان ضغط المفاعل، ويوجد معزولا في صرح خرساني سميك containment،
    وتخرج منه أنابيب دائرة البخار إلى التوربين وبالتالي المولد الكهربائي، ويري مكثف البخار
    وطلمبة وهم جميعا في ورشة معزولة عن خزان المفاعل (غير مرسومة).



    مفاعل الماء المغلي (بالإنجليزية: Boiling Water Reactor) هو نوع من مفاعل نووي يشبه مفاعل الماء المضغوط وينتمي الإثنان إلى فصيلة مفاعلات المياة الخفيفة. وبينما يحتوي مفاعل الماء المضغوط على دائرتين للماء والبخار - واحدة منها مشعة والأخرى غير مشعة، وبينهما مبادل حراري، فيتكون مفاعل الماء المغلي من دورة واحدة للماء وبخار الماء.


    أجزاء مفاعل الماء المغلي.


    تصـميمه
    1- خزان الضغط للمفاعل من الفولاذ (سمك 25 سنتيمتر)
    2- وحدات الوقود النووي (يورانيوم مخصب)
    3- قضبان الضبط من الكادميوم تمتص النيوترونات.
    6- خروج البخار المضغوط
    7- رجوع الماء المضغوط
    8- توربين بخاري ضغط عالي
    9- توربين بخاري ضغط متوسط
    10- مولد كهربائي
    12- مكثف البخار
    13- ماء تبريد (من نهر مجاور)
    14- تسخين ابتدائي للماء
    15- طلمبة ضخ الماء إلى خزان الضغط.

    يوجد خزان الضغط للمفاعل في مبني منفرد، وبجانبه مبني ورشة التوربيناتومولد الكهرباء. كلا المبنيان ذو حائط سمك من 1 إلى 5و1 متر تتحمل اصتدام طائرة مقاتلة بسرعة الصوت. وفي بعض الطرازت يحاط خزان ضغط المفاعل بكرة محكمة من الصلب إضافية بحيث تحتوي أي تسريب لمواد مشعة من خزان الضغط للمفاعل في حالة الطوارئ ،أو انفجار أحد الأنابيب الرئيسية، وتشكل تلك الكرة حاجزا إضافيا بين خزان الضغط للمفاعل والمبنى الخرساني السميك.

    طريقة عمله
    يضخ الماء الساخن الذي سبق تسخينه إلى خزان الضغط للمفاعل والذي هو عزول بواسطة بناية الحجز عن باقي مباني المفاعل. وتوجد في خزان الضغط صندوق وحدات الوقود المصنوع من أكسيد اليورانيوم المخلوط بنسبة 0و4 % باليورانيوم-235. ويكون خزان الضغط ممتلئا إلى نحو ثلثيه بالماء. ويؤدي التفاعل الانشطاري إلى تولد حرارة تعمل على رفع درجة حرارة الماء وتكون البخار، فيرتفع الضغط في خزان الضغك إلى 71 ضغك جوي كما ترتفع درجة الحرارة إلى 276 درجة مئوية. ويقوم هذا البخار المتولد في خزان الضغط بتحريك توربين. يتصل بالتوربين مولد كهربائي ضخم يحول طاقة الحركة الواردة إليه إلى طاقة كهربائية. وبعد خروج البخار من التوربين يكثف بواسطة ماء تبريد ويعود إلى الحالة السائلة، ثم يوجه إلى دورة المفاعل ليعمل من جديد.
    وتبلغ كمية ابخار الناتجة في خزان الضغط في مفاعل الماء المغلي في أحد المفاعلات الألمانية نحو 7000 طن في الساعة. كما يمكن ضبط قدرة المفاعل عن طريق طلمبات ضخ المياه إلى درجة من 60 % إلى 100%. كما تساعد قضبان ضبط التفاعل أيضا على ضبط قدرة المفاعل، وتكون قضبان الضبط مصنوعة من كربيد البور والهافنيوم أو الكادميوم / وعند توقيف جميع طلمبات ضخ المياه إلى خزان الضغط تنخفض قدرة المفاعل إلى نحو 30% إلى 40 % من قدرته الاسمية، وتسمى تلك الدورة المنخفضة القدرة نقطة الدورة الطبيعية.
    وتبلغ كفاءة عمل مفاعل الماء المغلي أقل قليلا من كفاءة مفاعل الماء المضغوط. وتبلغ كفاءة توليد الكهرباء نحو 35 %.

    الأمان
    يعمل التوربين في مفاعل الماء المغلي بالبخار القادم مبتشرة إليه من خزان الضغط للمفاعل. أي أن الماءالمغلي والبخار يحتويان على شوائب مشعة وهي لا تنحصر على خزان الضغط فقط، وهذا يستدعي إجراءات اللحام لدائرة البخار من خزان الضغط وإليه بعناية كبيرة. ومن وجهة الوقاية من الإشعاع فتصنف ورشة التوربين على أنها منطقة انضباط، وهذا معناه أنه أثناء عمل المفاعل لا يسمح بتواجد أحد العاملين في تلك الورشة إلا لدقائق قليلة ،حيث يكون معدل الإشعاع مرتفع نسبيا في ذلك المكان.
    ويترك البخار العالي الضغط خزان المفاعل بعد أن يمر على جهازي مفصل الماء ومجفف البخار وبذلك تقل درجة إشعاعه أقل من درجتها في ماء الخزان كثيرا. وتتكون المواد المشعة المتكونة في البخار الجاف من الأكسجين المشع وغازات خاملة مشعة، التي يبلغ عمر النصف لها من عدة ثوان إلى عدة دقائق. ولكن مع مرور الوقت تصبح أنابيب التوصيل إلى التوربين والتوربين نفسه ملوثة بالإشعاع سطحيا. وعند استبدال أحد تلك الاجزاء فيجري تنظيف لأسطحها بواسطة الجلخ، مثل استعمال خراطيم الرمل المضغوط.
    وتدخل قضبان ضبط التفاعل في خزان الضغط لمفاعل الماء المغلي من أسفل وهي تكون موزعة في قلب المفاعل بين وحدات الوقود النووي. ويقوم بضبطها محركات كهربائية خاصة سريعة الإغلاق وهي لا تعتمد على النظام العامل بضغط الماء. أي أن هذا لنظام يتبع مبدأ العطل الآمن عند حدوث عطل، ويتم ذلك بأن التوقيف السريع لدائرة التوليد يتم عن طريق طاقة مخزونة في خزانات للضغط تعمل تلقائيا. وإذا حدث أن تعطلت دوائر قضبان الضبط فيجري إيقاف عمل المفاعل عن طريق ضخ ماء يحتوي على حامض البور، وهو يمتص النيوترونات بشدة ويوقف التفاعل النووي.
    وبالمقارنة بمفاعل الماء المضغوط فتكون قضبان الضغط من أعلى في قلب المفاعل، وفي حالة الإيقاف التلقائي السريع فهي تسقط سقوطا حرا في قلب المفاعل بسبب وزنها، ووقف على الفور التفاعل النووي.

    حرارة الإشعاع الباقية

    تنشأعن التفاعل النووي في المفاعل كميات هائلة من مواد مختلفة مشعة وهي تتميز بارتفاع درجة حرارتها بسبب إشعاعها، وتعتمد درجة حرارتها على عمر النصف لنظائرها المختلفة. أي أنه عندما يتوقف عمل المفاعل تلقائيا بسبب عطل، وتوقف التفاعل النووي فيه، إلا أن حرارة الإشعاع تبقى سائدة وتستمر لفترة طويلة إذا تركت هكذا. لذلك تجرى احتطياطات بنائية للتخلص من حرارة الإشعاع حتى تتوقف دوائر الماء المنضغط والبخار بالفعل. ويجري ذلك في مفاعل الماء المغلي عن طريق ضخ بخار في مكثف التوربين أو ضخه في خزان تكثيف. بذلك يستخلص جزء كبير من الحرارة عن طريق البخار، ولهذ يحتاج مفاعل الماء المغلي كمية قليلة من الماء تضخ فيه لاستخلاص حرارة الإشعاع الباقية.
    وتوجد في كل مفاعل من مفاعلات الماء المغلي طلمبات عالية الضغط تعمل بواسطة توربين بخاري صغير، تدفع ماء تبريد في حزان الضغط للمفاعل. وتساعد في ذلك بطريات كبيرة بحيث يُضمن تبريد قلب المفاعل لمدة محدودة حتى في حالة فشل المولدات الاحتطياطية التي تعمل بالديزل.
    ومن خواص الأمن المميزة لمفاعل الماء المغلي هو إمكانية تبريد الأجزاء العلوية لوحدات الوقود عن طريق مرور البخار عليها. فإذا حدث وكان منسوب الماء في قلب المفاعل منخفضا بحيث تبقى أجزاء وحدات الوقود عارية من الماء، فإن البخار المندفع من أسفل إلى أعلى يكفي لتبريدها تلقائيا بحيث لا تفسد بفعل حرارتها المرتفعة.

    أنواع مفاعلات الماء المغلي

    الجيل الأول

    أنشأ الجيل الأول للمفاعلات في ألماني من مفاعلات الماء المغلي بالعمل المشترك بين جينرال إلكتريك وشركة AEG الأمانية في الخمسينيات والستينيات من القرن الماضي. وقد قامت الشركتان ببناء 4 مفاعلات آنذاك من هذا النوع. وقد انتهت مدة تشغيل تلك المفاعلات ن وعم في سبيل الهدم وإعادة الأرض خضراء كما كانت.
    كما يوجد في سويسرا مفاعل من هذا النوع من صنع جينرال إليكتريك وهو لا يزال يعمل.
    طراز 69

    قامت شركة Kraftwerk Union الألمانية عام 69 بتطوير هذا الطراز ويتميز هذا الطراز بتحويط خزان المفاعل بوعاء ضخم في شكل الكرة من الفولاذ تسع له، بالإضافة إلى البناء السميك الخرساني. وطبقا لهذا التصميم للمفاعل أصبح بناء المفاعل يستطيع تحمل صدمة طائرة مقاتلة سؤعتها فوق الصوت من دون أن يصاب المفاعل نفسه بخلل. صنعت أربعة مفاعلات من هذا الطراز في ألمانيا وعي لا تزال تعمل، وآخرهم من هذا النوع مفاعل كروميل قرب هامبورج وهو أكبر مفاعل ماء مغلي في العالم.

    طراز 72
    وهو آخر طراز منفذ في ألمانيا وصمم عام 1972. ويتخذ شكل بناء المفاعل في هذا الطراز الشكل الأسطواني. ويعتبر الطراز 72 تطوير للطراز 69 حيث تم تطوير أنظمة الأمان وتطوير المباني.

    تطور عام 2009

    قامت شركة أريفا Areva NP الفرنسية بالاشتراك مع شركة E.ON الألمانية بتطوير مفاعل جيد اعطوه اسم KERENA وهو تطوير لطراز 72، وهو من نوع مفاعل الماء المغلي وذو قدرة تصل إلى 1250 ميجاوات. وقد أعربت ولاية برونسفيك ب كندا إلى شركة أريفا عن عزمها في طلب بناء واحد من مفاعلات النوع الجديد KERENA .

    يتبع................
    التعديل الأخير تم بواسطة د. محمد سعيد عيسى ; 04-04-2011 الساعة 08:48 PM

  10. #30

    • د. محمد سعيد عيسى غير متواجد حالياً
    • مشرف

    تاريخ التسجيل
    Dec 2010
    العمر
    75
    المشاركات
    1,147

    افتراضي

    2 - مفاعل الماء المضغوط


    ويسمى أيضاً اختصاراً م.م.مضغوط (مفاعل ماء مضغوط)، Pressurized Water Reactor) PWR). وهو من فئة مفاعلات الماء الخفيف (م.م.خ.الجيل الثاني)،Light Water Reactor) LWR) التي تستخدم الماء الخفيف (العادي).




    مفاعل إنتاج القدرة في Saint-Laurent في فرنسا
    (Loir-et-Cher) وهو عبارة عن مفاعلي ماء مضغوط
    بقدرة إجمالية تبلغ 1830MW (ميغاواط).

    يختلف مفاعل الماء المضغوط عن مفاعل الماء المغلي من حيث أن مفاعل الماء المغلي له دائرة واحدة للماء والبخار من خزان الضغط للمفاعل إلى التوربينات بينما يجري ذلك في مفاعل الماء المضغوط في دائرتين. الدائرة الأولية هي دائرة المفاعل وهي عالية الشوائب المشعة حيث يلامس ماء التبريد وحدات الوقود النووي مباشرة. وتلتقي الدائرة الأولية خارج خزان المفاعل مع الدائرة الثانوية عند طريق مبادلات حرارية فيكون البخار الذي يدير التوربينات تقريبا خاليا من الشوائب المشعة. يدير بخار الماء ذو ضغط عالي التوربينات ، ويتصل على محورها المحول الكهربائي الضخم الذي ينتج التيار الكهربائي. وفي معطم أنحاء العالم تغلب مفاعلات الماء المضغوط لإنتاج القدرة الكهربائية.




    مكونات المفاعل: خزان ضغط المفاعل والمبدل الحراري داخل
    مبنى المفاعل (كروي)، وتخرج أنابيب البخار لتشغيل التوربينات،
    والمولد الكهربائي. يعود البخار بعد المكثف (أزرق) إلى المبدل
    الحراري لتكوين بخار من جديد.




    رسم توضيحي لمكونات مفاعل الماء المضغوط في الدارة الأولية:

    مبنى المفاعل (إلى اليمين) والمفاعل مع مبادلين حراريين لتوليد البخار(يسار)


    آلية العمل

    في الدارة الأولية، يُضغط الماء بواسطة ضاغط حتى يصل إلى ضغط حوالي MPa 15.5 ميجاباسكال ويدخل حاوية الضغط للمفاعل من أعلى ويسري في الداخل بين جدار الحاوية وقلب المفاعل ليصل إلى أسفل، حيث يوزَّع على القلب ويُضخ صعوداً خلال القلب الذي يحتوي على وحدات الوقود النووي ليخرج بعدها من أعلاها. تكون درجة حرارته عند الدخول حوالي 290 درجة مئوية (سيلزية C) وتبلغ 325 درجة تقريباً عند الخروج. بخلاف مفاعل الماء المغلي، إن عملية ضغط الماء في الدارة الأولية (وهي الدائرة الوحيدة) تمنعه من الغليان في قلب المفاعل.
    يتم التحكم في سير التفاعلات النووية وبالتالي في إنتاج الطاقة الكهربائية بواسطة قضبان التحكم التي تزج بين وحدات الوقود وتقوم هذه القضبان بتهدئة التفاعلات عن طريق امتصاصها للنيوترونات البطيئة الزائدة. ويتم التحكم في معدل التفاعلات من خلال خفض أو رفع قضبان التحكم في قلب المفاعل.

    عند خروج الماء من قلب المفاعل يدخل في مبادل حراري في الدارة الثانوية حيث يسخن الماء تحت ضغط أقل منه في الدارة الأولية مولداً بخاراً ذو ضغط عالي فيحرك زعانف توربين بخاري فيدور التوربين. ويتصل التوربين على محوره بمولد كهربائي ضخم فتتولد الطاقة الكهربائية. وتبلغ قدرة مفاعلات الماء المضغوط الحديثة بين 900 إلى 1.100 ميجاوات. يخرج بخار الماء من التوربين ويمر في مكثف حيث يعاد إلى الحالة السائلة ومنه إلى المبادل الحراري وهكذا.
    الوقود وإنتاج الطاقة

    تتألف البنية الأساسية لقلب المفاعل من مصفوفة وحدات (تجميعة وقودية) بقياس 20 cm x 20 cm x 4m وتحتوي الوحدة غالباً على17x17 قضيبا من أكسيد اليورانيوم UO2 المغلف بأنبوب من سبيكة الزركونيوم (Zircaloy) بقطر حوالي 1 سنتيمتر ويكون أوكسيد اليورانيوم داخلها في شكل أقراص اسطوانية صغيرة، تتراوح نسبة تخصيب اليورانيوم فيها من 2 إلى 4% أو تزيد.
    يتراوح عدد الوحدات الوقودية بين 190 إلى 240 في قلب مفاعل كبير، وتحتوي على 90.000 إلى 125.000 كيلوجرام من ال UO2. ويشكل قلب المفاعل في هيئة مصفوف اسطواني يبلغ قطره 3,5 متر بارتفاع يتراوح بين 3,5 إلى 4 أمتار. وكل وحدة من وحدات الوقود يتخللها عدد من قضبان التحكم تمتص النيوترونات الزائدة.




    وحدة وقود نووي لمفاعل ماء مضغوط، تحتوي على 17x17 من
    قضبان الوقود تحتوي على نحو 1/4 طن من الوقود النووي. تُرتَّب
    نحو 200 من وحدات الوقود لتشكل قلب المفاعل (reactor core).

    يتبع..........
    التعديل الأخير تم بواسطة د. محمد سعيد عيسى ; 08-04-2011 الساعة 02:53 PM

+ الرد على الموضوع
صفحة 3 من 4 الأولىالأولى 1 2 3 4 الأخيرةالأخيرة

معلومات الموضوع

الأعضاء الذين يشاهدون هذا الموضوع

الذين يشاهدون الموضوع الآن: 1 (0 من الأعضاء و 1 زائر)

     

المواضيع المتشابهه

  1. جهاز مبتكر، يحاكي النبات، لتوليد وتخزين الطاقة من الشمس
    بواسطة هانى عبد الحميد في المنتدى الزراعي العام
    مشاركات: 0
    آخر مشاركة: 27-12-2010, 07:38 AM
  2. زهرة الطاقة في الصين
    بواسطة ضحى العمر في المنتدى المنتدي العام
    مشاركات: 2
    آخر مشاركة: 17-11-2010, 04:44 PM
  3. الأوكسجين يعالج الأمراض ويزيد الطاقة وينشط الذاكرة
    بواسطة م/ إيهاب عبد المؤمن في المنتدى الصحة والطب
    مشاركات: 0
    آخر مشاركة: 06-02-2010, 07:23 AM

مواقع النشر (المفضلة)

مواقع النشر (المفضلة)

ضوابط المشاركة

  • لا تستطيع إضافة مواضيع جديدة
  • لا تستطيع الرد على المواضيع
  • لا تستطيع إرفاق ملفات
  • لا تستطيع تعديل مشاركاتك